If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x+1=-20+25
We move all terms to the left:
x^2-10x+1-(-20+25)=0
We add all the numbers together, and all the variables
x^2-10x+1-5=0
We add all the numbers together, and all the variables
x^2-10x-4=0
a = 1; b = -10; c = -4;
Δ = b2-4ac
Δ = -102-4·1·(-4)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{29}}{2*1}=\frac{10-2\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{29}}{2*1}=\frac{10+2\sqrt{29}}{2} $
| 0,5x+30=10 | | 13x-2=7x+52 | | (2k-1)(2K+1)=0 | | -20=2(3x-1) | | x^2-10x+1=-20 | | 5(a+4)=27a+10) | | 3(m-4)=32 | | (4k-7)^2-121=0 | | 5(2x-3)+1=-44 | | 6(k^2-4)=0 | | x-2=-2x+1 | | 1-(12/a)=13 | | 6k^2-3=2k | | 2x=0,36 | | 3k^2=3 | | 64=4k^2 | | 2x^2=17x-6 | | -4x+23=5(3x-3) | | x-23=3(2x-5)-3 | | 3x+(x÷3)=160 | | k^2-6k+27=0 | | 2(5+x)=12x-120 | | 2(5+x)=12x-120 | | 6x-6x^2=12x | | 13/14=26/c | | 9x-13=2x-48 | | 7x-2x-5x=15-1+5 | | f)10)=3(10)-7 | | X+3x+28=176 | | -2(d-2)=2d-20 | | 3(t+2)=16 | | x^2+11x30=0 |